การพัฒนาวิเคราะห์ที่ยั่งยืน
ด้วยการวิจัย首饰วิทยาการ

“The Development for Sustainable Landscapes through Multidisciplinary Research”

UBU-Research Conference” (UBRC 3)
ประชุมวิชาการ ม.อบ. วิจัย ครั้งที่ 3
28-29 กรกฎาคม 2552
มหาวิทยาลัยอุบลราชธานี
สารบัญ (ต่อ)

c.
• การเรียนรู้เกี่ยวกับพฤติกรรมของโค้ชผู้เล่นเกมยิงลูกสูติในและโค้ชมืออาชีพเมื่อ
 โมเดลการเรียนรู้แบบปลอมแปลง
 เอกชัย ภักดีวัฒน์ คณะเกษตรศาสตร์ มหาวิทยาลัยอุบลราชธานี 180

• ประสิทธิภาพของเชื้อแบคทีเรียป้องกันโรคป้องกันการเจริญของเชื้อแบคทีเรีย
 Xanthomonas campestris pv. vesicatoria สายพันธุ์โรบัสต์ของมะเขือเทศ
 ปราโมช ศรีทวี คณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยราชภัฏนครราชสีมา 188

• การตัดเลือกเชื้อ Klyveromyces marxianus DMKU 3-1042 กลางพื้นที่อบช่วยแสง UV
 และการปรับจับความดุนภูมิ
 สุธิรัตน์ ศรีสวัสดิ์ คณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยอุบลราชธานี 195

• การใช้คัดกรองและพัฒนารวมที่พืชเป็นต้นอุปกรณ์เพื่อควบคุมดุนภูมิ
 การ์ด ริตกรดี คณะวิศวกรรมศาสตร์และเทคโนโลยี มหาวิทยาลัยอุบลราชธานี 200

• ระบบการกำหนดประสบการณ์ผ่านเครื่องหินแก้วสำหรับการทดสอบการควบคุมดุนภูมิพืช
 สมชาย ปลิว笑脸 วิทยาลัยเทคโนโลยีเกษตร มหาวิทยาลัยอุบลราชธานี 208

• A Synthesis of Grounded Capacitance Multiplier Employing Only Single
 DO-CCTA and its application
 จันติภัสร์ จันติภัสร์ คณะวิศวกรรมศาสตร์และเทคโนโลยี มหาวิทยาลัยอุบลราชธานี 216

• การออกแบบและเรียกเครื่องเหมาความร้อนควบคุมด้วยเทคโนโลยีเธอร์โมแวร์
 ประวิทย์ ศรีสวัสดิ์ คณะวิศวกรรมศาสตร์และเทคโนโลยี มหาวิทยาลัยอุบลราชธานี 223

• การพัฒนาระบบสารสนเทศเพื่อการจัดการความรู้ป่าชุมชน
 มหาวิทยาลัยเทคโนโลยีราชมงคลทบนครคเมืองเหนือ 232

• การประยุกต์ใช้ระบบสารสนเทศในพืชวัฒนธรรมเพื่อประโยชน์ของการบริการภูมิปัญญาและการจัดการที่ชุมชน
 มหาวิทยาลัยเทคโนโลยีราชมงคลทบนครคเมืองเหนือ 240

• การพัฒนาระบบสารสนเทศเพื่อการจัดการความรู้ป่าชุมชน
 มหาวิทยาลัยเทคโนโลยีราชมงคลทบนครคเมืองเหนือ 247

• การประยุกต์ใช้ระบบสารสนเทศในพืชวัฒนธรรมเพื่อประโยชน์ของการบริการภูมิปัญญาและการจัดการที่ชุมชน
 มหาวิทยาลัยเทคโนโลยีราชมงคลทบนครคเมืองเหนือ 255
A Synthesis of Grounded Capacitance Multiplier Employing

Only Single DO-CCTA and its application

Adirek Jantakun1 and Montree Siripruchyanun2

1Department of Electronic and Telecommunication Engineering, Faculty of Engineering
Rajamangala University of Technology Isan, Khonkaen Campus

2Department of Teacher Training in Electrical Engineering, Faculty of Technical Education,
King Mongkut’s University of Technology North Bangkok

Abstract

This article introduces grounded capacitance multiplier using dual-output current conveyor transconductance amplifiers (DO-CCTA). Its outstanding feature is that the capacitive value can be widely adjusted by input bias currents of the DO-CCTA and is theoretically temperature-insensitive. The circuit construction consists of only single DO-CCTA, with a grounded capacitor. The circuit performances are depicted through PSPICE simulations. They show good agreement to theoretical anticipation. Increasing capacitance and an application as a fourth-order Chebyshev low-pass filter are included to confirm the usability of the proposed circuit.

Keywords: DO-CCTA, Capacitance multiplier, Temperature-insensitive

INTRODUCTION

It is well accepted that a capacitor is an important element which is frequently used in the most of circuits and systems. For example, it is used for tuning in filters, oscillators and etc. However, in the integrated circuit fabrication, it is impractical to realize large-valued capacitors because of the occupied area. In fact, in a standard CMOS polysilicon layers, a 20pF capacitor is equivalent, relatively to the silicon area, to thousands of transistors [1]. This means that the integration of capacitor as large as 100pF is not possible. In some applications, however, such as integrated lock-in amplifiers, sampled-data systems and capacitive sensor interfaces [2-5], they are necessary to have higher capacitive values.

A possible solution is the use of a capacitance multiplier, which performs the multiplication of small capacitive values, to obtain higher equivalent integrated capacitors, avoiding the need of a large silicon area [6]. From literature studies, several works which can provide a multiplied capacitor have been proposed. Although, the voltage-mode operational amplifier (op-amp) based capacitance multipliers are available in the literatures [7-9], they are not suitable from the view point of IC fabrication.
The modern active building blocks employ to synthesize the capacitance multipliers are emphasized on Operational Transconductance Amplifiers (OTAs) [9-11] and current conveyors [12-18] due to commercial availabilities. The literature surveys show that a large number of modern circuit realizations for capacitance multipliers have been reported [9-18]. Unfortunately, these reported circuits suffer from one or more of following weaknesses

- Need for passive element matching [9-11, 15-16].
- Lack of electronic tunability [12-15], [17], which cannot be implemented in automatic control systems.
- Excessive use of the active and/or passive elements [10-18].
- Use of floating capacitor, which is not convenient to further fabricate in IC [9-11, 13, 17].

Use of a capacitor connected to in appropriate terminal, which results in an extra pole, and consequently lower frequency of operation [12, 18]. A major restriction of the all previous capacitance multipliers is temperature dependence of the capacitive values due to parasitic parameters of active elements used in circuits which limits the performances of the circuits, especially in the works suffered from environment variations.

Recently, the capacitance multipliers based on DVCC (differential voltage current conveyor) and CCCCTAs (current controlled current conveyors) [19]. OTAs [20]. DVCC cooperating with CCCCTA (current controlled current conveyor transconductance amplifier) [21] and CCCCTAs [22] have been introduced. These circuits do not need any matching conditions of the elements. In addition, the capacitive values are electronically adjustable and ideally temperature-insensitive. Unfortunately, the circuits in [19, 21] consist of many different active elements while the reported circuit in [20] comprises 4 OTAs and the reported circuit in [22] comprises 2 CCCCTAs. There can be found that the recently proposed topologies need to employ a lot of elements, which is not convenient to either further fabricate in IC or practically implement and providing high power consumption.

In this paper, we present a novel capacitance multiplier emphasizing on use of the DO-CCTA, the employed element is recently proposed [23]. It has been proved to be a useful building block. The obtained capacitive value can be widely adjusted by any input bias currents of the DO-CCTA and is temperature-insensitive. The circuit construction comprises only single DO-CCTA, cooperating with a grounded capacitor, which is suited to realize in IC [24-25]. The PSPICE simulation results confirm the mentioned features. Consequently, the proposed grounded capacitance multiplier is appropriate for and further fabricating into an integrated circuit and implementing to capacitance-based circuits. Capacitance increasing and an application as a fourth-order Chebyshev low-pass filter are included.

PRINCIPLE OF OPERATION

A. The Dual-Output Current Conveyor Transconductance Amplifier (DO-CCTA)

The DO-CCTA, whose electrical symbol and equivalent circuit are shown in Fig. 1, is a seven-terminal network with the terminal ideal characteristics described by the following equation

\[
\begin{bmatrix}
I_x \\
V_x \\
I_y \\
I_u
\end{bmatrix} =
\begin{bmatrix}
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}
\begin{bmatrix}
I_x \\
V_x \\
I_y \\
I_u
\end{bmatrix}
\] (1)
where g_m is the transconductance parameter of a DO-CCTA. For a bipolar DO-CCTA, the transconductance gain can be expressed by

$$g_m = \frac{I_B}{2V_T}.$$ \hspace{1cm} (2)

I_B and V_T are input bias current and thermal voltage, respectively.

PROPOSED CAPACITANCE MULTIPLIER

The proposed grounded capacitance multiplier is shown in Fig. 2 and using only single DO-CCTA where I_{B1} and I_{B2} are input bias currents of DO-CCTA. Straightforwardly analyzing circuit in Fig. 2, an input impedance of the proposed circuit can be written as

$$Z_m = \frac{V_C}{I_C} = \frac{g_m}{sC_{B1}}.$$ \hspace{1cm} (3)

Substituting the transconductance gain as shown in Eq. (2) into Eq. (3) the input impedance is subsequently shown as

$$Z_m = \frac{V_C}{I_C} = \frac{I_{B2}}{I_{B1}3C}.$$ \hspace{1cm} (4)

The proposed circuit can provide the new grounded capacitor with a value

$$C_m = K_{m1}C = \frac{I_{B1}C}{I_{B2}}.$$ \hspace{1cm} (5)

It is evident that, the capacitive value is multiplied with a gain

$$K_{m1} = \frac{I_{B1}}{I_{B2}}.$$ \hspace{1cm} (6)

It is found that, if the connected capacitor is free from temperature, the obtained capacitive value is temperature-insensitive and can be adjusted by any input bias currents. Thus, K_{m1} can be multiplied as high as more than 6 decades, because I_{B1} can be as high as milliampere range, while I_{B2} can be as low as nanoampere range.
A. Non-ideal case

For non-ideal case, the DO-CCTA can be respectively characterized with the following equation

\[
\begin{bmatrix}
I_c \\
V_x \\
I_x \\
I_o
\end{bmatrix} =
\begin{bmatrix}
0 & 0 & 0 & 1 \\
0 & 0 & \alpha & 0 \\
\gamma & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
I_c \\
V_x \\
I_x \\
I_o
\end{bmatrix}
\]

(7)

\(\alpha \) is the frequency dependent current gain besides \(\beta \) and \(\gamma \) are the frequency dependent voltage gains. These gains are ideally equal to unity. In practice, they depend on the frequency of operation, temperature and transistor parameters of the DO-CCTA.

In the case of non-ideal, an input impedance in Eq. (4) is converted to

\[
Z_m = \frac{V_c}{I_c} = \frac{\beta I_{B1}}{\alpha \gamma I_{B2} + I_{B2} + C}.
\]

(8)

Practically, the \(\alpha \), \(\beta \) and \(\gamma \) originate from the intrinsic resistances and stray capacitances in the DO-CCTA. These errors affect the sensitivity to temperature and the high frequency response of the proposed circuit, then the DO-CCTA should be carefully designed to minimize these errors. Consequently, these deviations are very small and can be ignored in ideality.

B. Principle of capacitance increasing

Fig. 3 depicts the possible implementation of the high-value capacitance controllabilities [19]. The output stage of circuit in Fig. 2 is constituted by current amplifier. Then, the output current of current amplifier are equal to \(|I_{0}| = n I_{01} \), where \(n \) is the current gain of the current amplifier. So, the input impedance of circuit in Fig. 3 becomes

\[
Z_m = \frac{V_c}{I_c} = \frac{I_{B2}}{I_{B1} + C}.
\]

(9)

It is evident that, the capacitive value is multiplied with a gain

\[
K_{out} = \frac{n I_{B1}}{I_{B2}}.
\]

(10)

From Eq. (10), it is clearly seen that, we can control the capacitive value by adjusting the current gain of the current amplifier.
SIMULATION RESULTS AND DISCUSSION

To prove the performances of the proposed circuit, the PSPICE simulation program was used for the examination. The PNP and NPN transistors employed in the proposed topology were simulated by respectively using the parameters of the PR200N and NR200N bipolar transistors of ALA400 transistor array from AT&T [26]. The DO-CCTA employed in the proposed circuit was simulated with 1.5V supply voltages and input bias currents, $I_{S1}=20\mu A$, $I_{S2}=10\mu A$ and $I_{E2}=10\mu A$. Fig. 4 depicts schematic descriptions of the DO-CCTA used in the simulations.

Figure 4. Internal implementation of DO-CCTA

Figure 5. Phase and Magnitude of input impedance relative to frequency variations

Figure 6. Frequency responses of magnitude of input impedance due to temperature variations
Figure 7. Magnitude of input impedance relative to frequency variations of circuit in Fig. 3

![Network Diagram]

Figure 8. A fourth-order Chebyshev low-pass filter

![Frequency Response Graph]

Figure 9. Frequency response of the circuit in Fig. 8

Phase and magnitude responses for the impedances of the proposed circuit in Fig. 2 are given in Fig. 5. There can be seen the useful frequency ranges are about 1kHz to 2MHz. At higher frequencies, the internal parasitic elements, covering capacitances and resistances, degrade the performances of the proposed circuit. Similarly, these factors effect on temperature dependence of input impedance at the higher frequencies, as shown in Fig. 6.

In addition, from the result in Fig. 6, it is insisted that in the usable frequency range, the proposed circuit provides a grounded capacitance with temperature-insensitivities. Fig. 7 shows the magnitude of input impedances relative to frequency variations for different n of circuit in Fig. 3, where n is the current gain of the ideal current amplifier used for the simulation.

To show usability of the proposed circuit, an application as a fourth-order Chebyshev low-pass filter as shown in Fig. 8 is included. The results of frequency responses of the proposed capacitance multiplier, compared to the ideal capacitance, are confirmed in Fig. 9, where V_i = 10mV.

Fig. 10 depicts the plots of the simulated capacitance values relative to theoretical capacitance values for variations of the bias currents: I_m, where current gain(n) is identical values of 1, 10 and 100. It is seen that the simulation results are in accordance with the theoretical analysis as shown in Eq. (9). The results of the capacitance deviations due to temperature variations are about -0.39% at 0°C and 0.86% at 100°C, as shown in Fig. 11.
CONCLUSIONS

A novel grounded capacitance multiplier employing only single DO-CCTA has been introduced in this paper. The capacitive value can be widely adjusted by any input bias currents of the DO-CCTA and is slightly temperature independent. The circuit construction is composed of only single active elements, cooperating with a grounded capacitor. The PSPICE results confirm the mentioned features. The power consumption is approximately 0.32mW at ±1.5V supply voltages. Consequently, the proposed grounded capacitance multiplier is appropriate for further fabricating into an integrated circuit and subsequently implementing to capacitance-based circuits. Capacitance increasing and an application as a fourth-order Chebyshev low-pass filter are included, they show good performances of the proposed capacitance multiplier.

REFERENCES

