PID 0259 Quantitative Evaluation of Robust Visual Detector and Tracker Using Color Information under Illumination Changes ... 600
Yuta Kimura1, Hiroshi Takemura1, and Hiroshi Mizoguchi1
1. Tokyo University of Science, Japan

PID 0264 Circuit Design for High-Speed T-Type Flip-Flop using SiGe HBTs ... 602
Kazuaki Arai1, Tomoyasu Mizuno2, and Kiyoshi Ishii1
1. Chubu University, Japan

PID 0265 Asynchronous Cache Interface Circuits for Clockless Processor Core Designed by TiDE Tool Flow ... 606
Myeong-Hoon Oh1, Young Woo Kim1, Sung-Nam Kim1, and Seongwoon Kim1
1. Electronics and Telecommunications Research Institute, Korea

PID 0266 Low Complexity Ultra-Wideband System for On-Body Area Network Applications ... 610
Youngji Kim1, Junha Im1, and Jaeseok Kim1
1. Yonsei University, Korea

PID 0267 A Simple Current-Mode Analog Multiplier/Divider Using Only Single DO-CCTA ... 612
Adirek Jantakun1 and Montree Siripruchyanun2
1. Rajamangala University of Technology Iraun, Thailand;
2. King Mongkut's University of Technology North Bangkok, Thailand

PID 0268 An Electronically Tunable Active-Only Current-Mode Quadrature Oscillator and Universal Bquad Filter ... 616
Adirek Jantakun1 and Montree Siripruchyanun2
1. Rajamangala University of Technology Iraun, Thailand;
2. King Mongkut's University of Technology North Bangkok, Thailand

PID 0270 A Study on Texture Filtering Using JPEG 2000 Scalabilities ... 620
Yuki Kobayashi1, Masaaki Fujiyoshi1, and Hitoshi Kiya1
1. Tokyo Metropolitan University, Japan

PID 0273 CFTA-Based Current-Controlled Current Amplifier and Its Application ... 624
Praty Mongkolwai1, Danucha Prasertsom2, and Worapong Tangsirirat1
1. King Mongkut's Institute of Technology Ladkrabang, Thailand;
2. King Mongkut's University of Technology North-Bangkok, Thailand

PID 0274 Multicore System Design for Fast Geometrical Image Processing ... 628
Jae Ho Lim1, Suk Ho Lee1, and Jong Won Park1
1. Chungnam Natl. University, Korea

PID 0275 Analysis of Facebook Usage by College Students in Thailand ... 631
Arkorn Bunloei1, Kanda Runapongsa Saikew1, Mongkon Tengtrungruji1, Nutinee Naninithusana1,
Treewijit Mungpooklang1, Pooshe Dabpoookhiew1, Tippayanate Winkam1, Nitha Arayasilapatorn1,
Amorn Preengamone1, Amornrat Rattanastri1, and Annut Chaoasuk1
1. Khon Kaen University, Thailand

PID 0277 Application of CRLH Transmission Line to the Power Saving of Dual-Band Mobile-WIMAX Terminals ... 635
Youngcheol Park1 and Hoijin Yoon2
1. Hankuk University of Foreign Studies, Korea; 2. Hanyung University, Korea

PID 0279 Virtual Keyboard for Immersive Virtual Environment by Using Touch-Panel PC ... 637
Masahiro Sakamoto1 and Takashi Kobayashi1
1. Saitama Institute of Technology, Japan

PID 0281 An Area Efficient Decoder for QC-LDPC Codes ... 641
Yong-Woon Cho1, Joo-Yul Park1, and Ki-Seok Chung1
1. Hankyang University, Korea

PID 0282 Improved Prediction-Error Adjustment and Linear Fitting Predictor for Reversible Watermarking .. 645
Thaneet Ketthong1, Sirisorn Mitronan2, Sakol Udomsiri2, and Weraso Chinarat1
1. King Mongkut's University of Technology Thonburi, Thailand; 2. Pathumwan Institute of Technology, Thailand

PID 0284 The Functional Verification of a Sequential Booth's Multiplier Using Layered Testbench ... 649
Young-Jin Oh1 and Gi-Yong Song1
1. Chungbuk National University, Korea

PID 0285 Circuit Structure of Level Shifter for Sub-Threshold Operation ... 653
Tomohiro Ishizaki1
1. Shibaura Institute of Technology, Japan

PID 0287 Multi-Stage Tamper Detection and Restoration Based on Triple Watermarking ... 657
Chao-Ming wu1, Tsung-Yang Kao1, Hou-shou Chen2, and Chen-Gom Wu2
1. National Formosa University, Taiwan; 2. National Chung Hsing University, Taiwan
AN ELECTRONICALLY TUNABLE ACTIVE-ONLY CURRENT-MODE QUADRATURE OSCILLATOR AND UNIVERSAL BIQUAD FILTER

Adirek Jantakun* and Montree Siripruchyanun**

*Department of Electronic and Telecommunication Engineering, Faculty of Engineering, Rajamangala University of Technology Isan, Khonkaen Campus, Khonkaen, 40000, THAILAND,
E-mail: mr.adirek@hotmail.com

**Department of Teacher Training in Electrical Engineering, Faculty of Technical Education,
King Mongkut's University of Technology North Bangkok, Bangkok, 10800, THAILAND,
Tel: +66-2- 913-2500 Ext. 3328, E-mail: ms@kmutnb.ac.th

ABSTRACT
In this article, a novel circuit, which can function both as current-mode quadrature oscillator and as a universal biquad filter (lowpass, highpass and bandpass) is introduced. For working as quadrature oscillator, the oscillation condition and oscillation frequency can be independently adjusted by the corresponding input bias currents. For functioning as universal biquad filter, the quality factor and cutoff frequency can be tuned orthogonally via the corresponding input bias currents. The proposed circuit can work as either the quadrature oscillator or the universal biquad filter without changing any circuit topology. The circuit description is very simple, comprises only active elements, which are 6 OTAs and 2 operational amplifiers (OAs), this circuit is then suitable for IC architecture. The PSPICE simulation results are depicted. The given results agree well with the theoretical anticipation.

Index Terms—OTA, Operational amplifier, Active-only, Quadrature, Biquad Filter

1. INTRODUCTION
Electronically tunable filters and oscillator find wide applications in automatic control, instrumentation and communication system and etc. The both circuits have been developed much effort. Among several types of the oscillators, a quadrature oscillator is widely used because it can provide two sinusoids with 90° phase difference, for example in telecommunications for quadrature mixers and single-sideband systems [1-2]. Similarly, the modern applications and advantages in the realization of various active transfer functions, called universal biquad filters, have received considerable attention. A universal filter may be used in phase locked loop FM stereo demodulators and crossover networks, used in three-way high fidelity loudspeakers [3]. Since the last two decade, there has been much effort to reduce the supply voltage of analog systems, this is due to operating in low-voltage environments, such as portable and battery-powered equipments. As a low-voltage operating circuit becomes necessary, the current-mode technique is more ideally suited to this purpose, owing to their larger dynamic range, wider bandwidth, greater linearity, simpler circuitry, and lower power consumption [4].

It is well known that the pole-model of OAs in place of external capacitors have the advantages of small chip area for monolithic implementation [5-6]. Moreover, the employment of OA-pole model in the synthesis of filters and oscillators, renders the circuit stable with extended range of frequency [6-7]. OTAs provide highly linear electronic tunability and wide tunable range of their transconductance gains [6]. These varied performance enhancing features motivates the circuit designers to develop filters and oscillator using only OAs and OTAs.

Until now, previous works have proposed versatile quadrature oscillator and biquad filter devices for compactness purpose using different high-performance active building blocks [8-11] such as current-controlled current differencing buffered amplifiers [8] (CCCDBAs), current-controlled current differencing transconductance amplifiers (CCCDTAs) [10-11]. Reportedly, the outputs of these circuits do not have high output impedances, making the cascade ability challenging. The presented circuit in [10] is simple, the output current signals are provided at passive element terminals. Thus, it needed to employ a current mirror or current buffer to obtain the usable output currents, this makes the circuit more complicated. The reported circuits in [11] exhibit good performance in terms of electronic tunability, high-output impedances, independent control of quality factor and pole frequency via input bias currents. Its oscillation condition and oscillation frequency can be also adjusted independently by the input bias currents. However, the circuit has low output impedance, it requires an additional current follower, for some output filter functions. Furthermore, these reported circuits [8-11] suffer from one or more of external passive elements.

2. PRINCIPLE AND OPERATION

2.1. The Operational Transconductance Amplifier (OTA)
An ideal OTA has infinite input and output impedances. The output current of an OTA is given by

\[I_O = g_m(V_i - V_C) \] \hspace{1cm} (1)
where g_m is the transconductance of the OTA. For a bipolar OTA, the transconductance can be expressed by

$$g_m = \frac{I_g}{2V_T},$$ \hspace{1cm} (2)$$

where I_g and V_T are the bias current and thermal voltage (26mV at 300K$^{-1}$), respectively. The symbol and the equivalent circuit of the OTA are illustrated in Figs. 1(a) and (b), respectively.

![Figure 1. OTA (a) Symbol (b) Equivalent circuit.](image)

2.2. Operational Amplifiers

The open-loop gain of a practical internally frequency compensated OA is represented by following transfer function

$$A(s) = \frac{A_0 \omega_p}{s + \omega_p},$$ \hspace{1cm} (3)$$

where A_0 is open-loop DC gain, ω_p is the first pole frequency and $B = A_0 \omega_p$ is the gain-bandwidth product of the OA. For the frequencies $\omega < \omega_p$, (3) is approximately given by [5-7]

$$A(s) = \frac{B}{s},$$ \hspace{1cm} (4)$$

2.3. The proposed circuit operating as a universal biquad filter

The completely active-only high output impedance current-mode universal biquad filter is shown in Fig. 2. From the OTA and OA properties in Section 2.1-2.2, the following current transfer functions are subsequently obtained

$$I_{LP} = \frac{B_1 B_2 g_m g_{n6}}{s^2 + (g_{m} - g_{n5}) s + \frac{B_2 B_1 g_m g_{n6}}{g_{n5}}},$$ \hspace{1cm} (5)$$

$$I_{LP'} = \frac{B_1 B_2 g_m g_{n6}}{s^2 + (g_{m} - g_{n5}) s + \frac{B_2 B_1 g_m g_{n6}}{g_{n5}}},$$ \hspace{1cm} (6)$$

$$I_{BP} = \frac{g_m}{s^2 + (g_{m} - g_{n5}) s + \frac{B_2 B_1 g_m g_{n6}}{g_{n5}}},$$ \hspace{1cm} (7)$$

![Figure 2. Proposed circuit working as universal filter.](image)

From (5), (6) and (7), the parameters ω_0 and Q_0 can be expressed as

$$\omega_0 = \sqrt{\frac{B_1 B_2 g_m g_{n6}}{g_{m} g_{n5}}},$$ \hspace{1cm} (8)$$

$$Q_0 = \sqrt{\frac{B_1 B_2 g_m g_{n6}}{g_{m} g_{n5}} \frac{g_{m} - g_{n5}}{g_{m} - g_{n5}}}. $$ \hspace{1cm} (9)$$

If letting $B_1 = B_2 = B$ and substituting the transconductances as depicted in (2), it yields

$$\omega_0 = \frac{B_1 B_2 g_m g_{n6} g_{n5}}{g_{m} g_{n5}},$$ \hspace{1cm} (10)$$

$$Q_0 = \frac{B_1 B_2 g_m g_{n6} g_{n5}}{g_{m} g_{n5} (g_{m} - g_{n5})}. $$ \hspace{1cm} (11)$$

From (10) and (11), it can be seen that quality factor (Q_0) can be adjusted independently from the pole frequency (ω_0) by varying I_m and I_n, while the pole frequency can be adjusted by I_{BP} - I_{BP}. Thus, bandwidth (BW) is given by

$$BW = \frac{\omega_0}{Q_0} = \frac{I_{BP}}{I_m + I_{BP}},$$ \hspace{1cm} (12)$$

2.4. Proposed circuit operating as a quadrature oscillator

If no input current is applied to the circuit as shown in Fig. 3, the system characteristic equation can be expressed as

$$s^2 + (g_{m} - g_{n5}) \frac{g_{m} - g_{n5}}{g_{m} g_{n5}} s + \frac{B_2 B_1 g_m g_{n6} g_{n5}}{g_{m} g_{n5}} = 0.$$ \hspace{1cm} (13)$$

From (13), it can obviously be seen the proposed circuit can be set to be oscillator if

$$g_{m m} = g_{m 5}.$$ \hspace{1cm} (14)$$

ω
Substituting the corresponding transconductances as shown in (2) into (14), the condition of oscillation is given by

$$I_g = I_{a2}.$$ \hspace{1cm} (15)

Then, the characteristic equation of the system becomes

$$s^2 + \frac{B_2B_5g_m}{g_m} = 0.$$ \hspace{1cm} (16)

From (16), the oscillation frequency of this system can be obtained as

$$\omega_{osc} = \sqrt{\frac{B_2B_5g_m}{g_m}}.$$ \hspace{1cm} (17)

Substituting the corresponding transconductance as shown in (2) into (17), the oscillation frequency (ω_{osc}) is given by

$$\omega_{osc} = B_2 \sqrt{\frac{I_{g2}I_{g3}}{I_{g1}}}.$$ \hspace{1cm} (18)

It is obviously found that, from (18), the oscillation frequency can be electronically adjusted by setting I_{g1}, I_{g2}, I_{g3}, or I_{g4}, where the condition of oscillation can be tuned by either I_{g1} and I_{g2}.

From Fig. 3, the voltage transfer function from V_{C2} to V_{CH} is

$$\frac{V_O(s)}{V_{C2}(s)} = \frac{g_m}{sBg_m}.$$ \hspace{1cm} (19)

Under sinusoidal steady state, (18) becomes

$$\frac{V_O(s)}{V_{C2}(s)} = B_2 \frac{g_m}{g_m} e^{-j\omega t}.$$ \hspace{1cm} (20)

The phase difference ϕ between V_{C2} and V_{CH} is

$$\phi = -90^\circ.$$ \hspace{1cm} (21)

Ensuring the voltages V_{C2} and V_{CH} to be in quadrature.

![Figure 3. Proposed circuit working as quadrature oscillator.](image)

3. SIMULATION RESULTS AND DISCUSSION

To prove the performances of the proposed circuit, the PSPICE simulation program was used for the examination. The PNP and NPN transistor employed in the proposed circuit were simulated by respectively using the parameter of the PR200N and NR200N bipolar transistors of ALA400 transistor array from AT&T [12]. Fig. 4 depicts schematic description of the OTA used in the simulations. The circuit was biased with \pm5 V supply voltages. LM741 opamp with the gain bandwidth product of $B = 2\pi(1.0027) \times 10^6$ rad.s^{-1} is used.

![Figure 4. Internal construction of OTA.](image)

Figure 5. Gain responses of the proposed circuit working as universal filter.

![Figure 6. BP responses for different values of I_{g1}.](image)

![Figure 7. BP responses for different values of I_{g2}.](image)
The result in Fig. 5 illustrates the magnitude responses of the universal filter. It shows that the proposed filter provides LP, HP and BP responses at the same time. Fig. 6 confirms that the quality factor can be adjusted by I_d, which is not affect the pole frequency, as analyzed in (11). Fig. 7 shows the responses of the band-pass function where I_{BE} is set to $140\mu A$, $240\mu A$ and $340\mu A$. This shows that the pole frequency can be adjusted electronically, as depicted in (10).

Fig. 8 shows the output transient responses when the proposed circuit operates as quadrature oscillator. Fig. 9 shows the simulated output spectrum, it is found that the total harmonic distortion (THD) is about 3.57% for oscillation frequency of 275kHz. Fig. 10 depicts the plots of the oscillation frequencies relative to the bias currents, I_{BE} and I_{BE}, where $I_{BE} = 85\mu A$, $95\mu A$, $105\mu A$, and $I_{BE} = 20\mu A$, $30\mu A$, $40\mu A$.

4. CONCLUSION

The novel circuit, which can function bolts as current-mode universal biquad filter and quadrature oscillator obtained from the same network based on 6 OTAs and 2 OAs. The proposed circuit can work as either a quadrature oscillator or a universal biquad filter without changing the circuit topology. Working as current-mode universal biquad filter, the pole frequency can be tuned which electronically and the quality factor can be tuned independently from the pole frequency. With no input current and under suitable condition, the proposed circuit functions as a quadrature oscillator. Its oscillation condition and oscillation frequency can be also adjusted independently by the input bias currents. In addition, it is also found that the circuit can be electronically tunable. As mentioned advantages, the proposed circuit is convenient to fabricate integrated circuit (IC). The PSPICE simulation results agree well with the theoretical anticipation.

5. ACKNOWLEDGEMENT

This work is funded by Faculty of Engineering, Rajamangala University of Technology Isan, Khonkaen Campus.

6. REFERENCES

