การประยุกต์ใช้งานโปรแกรม OrCad Lite Capture CiS Lite Edition ในการนำมาจากออกแบบการทำงานแบบอุปกรณ์และวงจรอิเล็กทรอนิกส์

"Differential Voltage to Current Converter"

...เป็นโปรแกรมที่ใช้ในการจำลองการทำงานของวงจรอิเล็กทรอนิกส์ที่มีการนำมาจากงานก่อนอย่างแพร่หลายในปัจจุบัน นั้นก็เท่ากับที่จะเป็นโปรแกรม "OrCad Lite Capture CiS Lite Edition" โดยในบทความนี้จะได้กล่าวถึงการทำงานโปรแกรมไปใช้ในการศึกษาการทำงาน และทดสอบการทำงานของวงจร Differential Voltage to Current Converter ก่อนที่จะนำไปใช้งานในระดับที่ซูซิ่งต่อไป...

...ดังตัวอย่าง...กลับมาพบกับอีกครั้งแล้ว โดยในบทความนี้ก็จะหลายที่การออกแบบทาง BOOLEAN ประยุกต์ใช้งานในโปรแกรม OrCad Lite Edition เพื่อออกแบบและทดสอบการทำงานของวงจรที่ใช้เซ็นเซอร์ UA741 โดยจะเป็นโซ่ที่นำเข้าใช้งานไปถึงจะเป็นทางด้านการออกแบบการทดสอบชั้นนั้นทำให้สามารถใช้งานได้ ที่สำคัญก็คือ การออกแบบวงจรเชื่อมต่อกันต่อกันสำหรับเป็นระบบ หรือก็คือ Differential Voltage to Current Converter (DVCC) มาถูกกันและกันจะเป็นเรื่องการออกแบบวงจรในแต่ละชั้นอย่างไร และสามารถที่จะทำการทดสอบวงจรที่ได้ออกแบบนั้นได้อย่างไร...?

ความสุ่มนิยมในแบบการออกแบบของ Differential Voltage to Current Converter

ถ้าจะกล่าวถึงขั้นสู่การออกแบบและวิธีการออกแบบนั้นก็จะเห็นจากที่ทำการป้องกันตั้งค์ (V_m) และป้องกันตั้งค์ (V_n) ให้กับวงจร ที่จะส่งผลให้แม่เหล็กสัญญาณต่างกัน
คำว่าว่าหากการตรวจสอบดีเกินขั้นนั้นแล้ว ตรงที่มันจะมีความแตกต่างนี้ก็จะมีผลทำให้คำว่าของกระแสที่มีความกลับน้อยแตกต่างกันออกไป รวมทั้งจะส่งผลทำให้คำว่ากระแสที่ได้ยอมมาค้นนี้มีค่าเป็นบวก (+) หรือเป็นลบ (−) ค่อน ดังได้แสดงในรูปที่ 1 ซึ่งเป็นโครงสร้างของกระแสที่จะส่งผลต่อกระแสส่งผลต่อง่ายที่จะเป็นกระแสที่ออกมา จากที่ได้กล่าวมาเกิดขึ้นอย่างไรแล้ว ว่ากระแสที่ออกมาจะเป็นกระแสที่มีค่าเป็นบวกหรือเป็นลบ สามารถอธิบายได้ดังนี้...

รูปที่ 1 โครงสร้างของกระแสสิ่งแวดล้อมเองที่ได้เป็นกระแสที่ออกมา

จากรูปที่ 1 จะเห็นว่าเป็นโครงสร้างของกระแสสิ่งแวดล้อมเองที่ได้เป็นกระแสที่ออกมา โดยที่เราจะใช้ช่องแปลงป่าแบบ UA741 มาใช้ในวงจรเปลี่ยนกระแสสิ่งแวดล้อมเองที่ได้เป็นกระแส และได้ใช้ดังที่แสดงในรูปที่ 1 จะส่งผลให้กระแสที่ได้เป็นกระแส และใช้ได้ดังที่แสดงในรูปที่ 1 มาเป็นส่วนของการบวกแยกที่มีค่าเป็นลบ และได้ใช้ดังที่แสดงในรูปที่ 1 มาเป็นส่วนของการบวกแยกที่มีค่าเป็นบวก เพื่อจะได้เป็นการตัดเสถียรภาพที่มีค่าสูงซึ่งสุดท้ายนี้แล้วนั้น

ซึ่งลักษณะของกระแสและกระแสที่ได้จากวงจรเปลี่ยนกระแสสิ่งแวดล้อมเองที่ได้เป็นกระแสที่ออกมาลงนั้น ก็สามารถแสดงได้ดังรูปที่ 2(a) และรูปที่ 2(b)

จากรูปที่ 2(a) จะเห็นลักษณะของกระแสและกระแสที่ได้จากวงจรเปลี่ยนกระแสสิ่งแวดล้อมเองที่ได้เป็นกระแส ที่ออกมา เมื่อ $V_{m1} > V_{m2}$ ซึ่งจะเห็นได้ว่ากระแสด้านอาหาร (P) นั้นจะมีค่าเป็นบวก และในส่วนของกระแสที่ไหลผ่านด้านด้านอาหารก็จะมีค่าเป็นบวกเช่นเดียวกัน

และจากรูปที่ 2(b) ก็จะเห็นลักษณะของกระแสและกระแสที่ได้จากวงจรเปลี่ยนกระแสสิ่งแวดล้อมเองที่ได้เป็นกระแส ที่ออกมา เมื่อ $V_{m1} > V_{m2}$ ซึ่งจะเห็นได้ว่ากระแสด้านอาหาร (P) นั้นจะมีค่าเป็นบวก และในส่วนของกระแสที่ไหลผ่านด้านด้านอาหารก็จะมีค่าเป็นบวกเช่นเดียวกัน

ดังนั้นจากรูปที่ 1 ที่แสดงถึงโครงสร้างของกระแสสิ่งแวดล้อมเอง กระแสสิ่งแวดล้อมเองที่ได้เป็นกระแสที่ออกมา และรูปที่ 2(a) รูปที่ 2(b) ที่แสดงถึงลักษณะของกระแสและกระแสที่ได้จากวงจรเปลี่ยนกระแสสิ่งแวดล้อมเองที่ได้เป็นกระแสที่ออกมา เมื่อ $V_{m1} > V_{m2}$ และเมื่อ $V_{m1} > V_{m2}$ ก็จะเห็นได้ถึงลักษณะขั้นตอนการทำงานของกระแสที่เราได้ส่งผล แล้ว ดังนั้นเราสามารถทำกระบวนการนี้ให้ตามที่เราได้ต้องการก็จะมีลักษณะของกระแสที่จะนำไปใช้งานจริง ดังแสดงในรูปที่ 3

จากรูปที่ 3 ที่จะเป็นลักษณะของกระแสสิ่งแวดล้อมเอง กระแสที่ได้เป็นกระแสที่ออกมา ซึ่งจะเห็นได้ว่ามีการนำเอาแบบ UA741 มาใช้งานแล้วที่ได้แสดงไว้ เพื่อให้ได้ผลแบบ UA741.
 UA741 นี้มาทำหน้าที่เป็นตัวเปลี่ยนแรงดันแสดงให้เป็นกระแสครับ โดยคูณเส้นผ่านพื้นจุดของวงจรในกระแสเกียวกับที่มีค่าของยอดดักซึ่งแต่ละดูมมาก ๆ สิ่งนี้อยู่จากรูปที่ได้ออกแบบนี้ เราถ้าสามารถจะเปลี่ยนกระแสหรือเปลี่ยนความสัมประสิทธิ์ได้ถ้าต้องไปนี่

\[
\frac{V_{in} - V_A}{R_a} = \frac{V_A - V_i}{R_b}
\]

\[
\frac{V_{in}}{R_a} = \frac{V_A}{R_b} - \frac{V_i}{R_b}
\]

\[
\frac{V_{in} + V_{out}}{R_b} = \frac{V_A}{R_b} + \frac{V_{out}}{R_b}
\]

\[
\frac{V_{out}}{R_b} = \frac{V_A}{R_b} + \frac{V_{out}}{R_b}
\]

\[
\frac{V_{out}}{R_b} = \frac{V_A}{R_b} + \frac{V_{out}}{R_b}
\]

\[
V_{out} = 2V_A - V_{in}
\]

ดังนี้เราก็จะได้สมการที่ใช้ในการคำนวณหาค่ากระแสใน สามารถที่ 1 ครับ

\[
V_{out} = 2V_A - V_{in}
\]
วงกล้านส่งได้เป็นกระแสที่ต้องออกมา เมื่อกำหนดให้ $V_{in} > V_{out}$ โดยใส่เอาไว้ด้วยการค้นหาตัวอย่างตัวอย่างต่างๆ ตัวอย่างในรูปที่ 4 แล้ว เราจะสามารถที่จะทำการค้นหาค่าต่างๆ ได้ดังนี้

$$I = \frac{V_{in}}{R}$$

$$I = 5V - 0V$$

$$I = 1mA$$

ค่าหน่วยค่าส่งต้น (V_s) ก็สามารถค้นหาค่าได้ดังนี้

$$I_s = \frac{V_s}{R}$$

$$V_s = 1mA \times 2\Omega$$

$$V_s = 2V$$

*** เมื่อ $V_{in} = V_s = 2V$ ***

ค่าหน่วยค่าส่งต้น (V_s) ก็สามารถค้นหาค่าได้ดังนี้

$$I_{out} = \frac{V_{out}}{R_{out}}$$

$$V_{out} = 2V - V$$

$$V_{out} = 2(2V) - 0V$$

$$V_{out} = 4V$$

จากรูปที่ 5 ที่ได้ทำการค้นหาออกมาได้ คือข้อมูลต่างๆ ที่ได้จากการทำงานของวงจรเมื่อต่อที่เข้า ซึ่งจะมีการใช้งานต่างๆ ในที่นี้มีการใช้งานในโปรแกรม OrCad Lite Edition ได้แสดงในตารางที่ 1

<table>
<thead>
<tr>
<th>ชื่ออุปกรณ์ในวงจร</th>
<th>ชื่ออุปกรณ์ในโปรแกรม</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vin1, Vin2, V1, V2</td>
<td>VDC/CLASS : (Place Part)</td>
</tr>
<tr>
<td>-V, + V</td>
<td>VCC/CAPS : (Place Power)</td>
</tr>
<tr>
<td>U1 (UA741)</td>
<td>UA741/EVAL : (Place Part)</td>
</tr>
<tr>
<td>R, Rb, Rc, Rd, RL</td>
<td>R/CLASS : (Place Part)</td>
</tr>
<tr>
<td>GND</td>
<td>GND/CAPS : (Place Ground)</td>
</tr>
</tbody>
</table>

ตารางที่ 1 แสดงชื่ออุปกรณ์ในวงจรและชื่ออุปกรณ์ในโปรแกรม OrCad Lite Edition

รูปที่ 6 แสดงตัวอย่างการจำลองการทำงานของอร์เจิร์ก "Differential Voltage to Current Converter" เมื่อกำหนดให้ $V_{in} > V_{out}$

ดูยุทธการใช้งานจากตารางและคุณสมบัติการทำงานที่จะได้ทำการค้นหาตามที่ต้องการ (แต่ไม่ได้ทำการทำแบบต้นต้นอย่างที่ให้ก่อน) ที่ได้ต่อที่ได้จากการทำงานของวงจร และจากเส้นที่เขียนต้องทำตามที่ได้แสดงในรูปที่ 6 สามารถเชื่อมโยงไปก็จะสามารถทำงานทางกล้านของวงจร ซึ่งเราจะทำการวิเคราะห์ทางแบบ Time
Domain (Transient) มาถูกกันแล้ววิธีการเข้าต่างๆ จะออกไปนั่ง
การวิเคราะห์และการออกแบบระบบจะส่ง تعالى
OrCad Lite Capture CIS Lite Edition

ในส่วนนี้จะเป็นส่วนที่สำคัญมากเลย เพราะจะต้องทำการเข้าต่างๆ อยู่หลายคำศัพท์ มีอยู่ที่จะทำการเริ่มการทดสอบผล
สอบถามของระบบ ฉะนั้นทำการดูแล ตัวแสดงในรูปที่ 7

Start saving data after : เป็นการกำหนดสุดท้ายที่จะหมายเหตุเวลาที่จะทำการวิเคราะห์สัญญาณ โดยในที่นี้จะกำหนดให้มีค่า
เท่ากับ 0 s ซึ่งเป็นค่ามาตรฐานที่ได้ก่อนครับ และ

SKIPBP : ให้ทำการเลือกเพื่อเปิดการใช้งานในการวิเคราะห์แบบ Skip the initial transient bias point calculation (SKIPBP) นั้นอยู่ใน
และในการทดสอบระบบการวิเคราะห์จะ

เป็นอย่างไรโปรดคุมจุดหาได้ต่อไปนี้

ดังนั้นเมื่อมีการทดสอบวงจร ผ่านการทดสอบที่ได้จากโปรแกรม OrCad Lite Capture CIS Lite Edition ในการวิเคราะห์วงจรแบบ Time Domain (Transient) จะแสดงในรูปที่ 8 และในรูปที่ 9

รูปที่ 7 การกำหนดตัวค่าของการโปรแกรม OrCad Lite Capture CIS Lite Edition
ในการวิเคราะห์ระบบแบบ Time Domain (Transient)

โดยในส่วนของการกำหนดตัวค่าต่างๆ นั้น ให้ผู้ใช้ทำการ
กำหนดตามที่ได้ผลมาได้เลยเลย สำหรับก่อนสร้างในการกำหนดตัว
ต่างๆ นั้น หากผู้ใช้จะขอใช้บิล์ดก็ต้อง เนื่องจากการลิ้งก์ให้
ในส่วนของการกำหนดตัวค่าต่างๆ แบบ Time Domain (Transient) จะใช้
อยู่ 3 คุณ ที่จะต้องเลือกให้ตัวอยู่ดังนี้

Run to time : เป็นการกำหนดสุดท้ายของเวลาที่จะ
ทำการวิเคราะห์สัญญาณ โดยในที่นี้จะกำหนดให้มีค่าเท่ากับ 5ms

รูปที่ 8 แสดงการทำงานของวงจร Differential Voltage to Current Converter ที่ออกแบบ เมื่อกำหนดให้ V + > V \textsubscript{+} (ดีไซน์)

รูปที่ 9 แสดงการทำงานของวงจร Differential Voltage to Current Converter ที่ออกแบบ เมื่อกำหนดให้ V + > V \textsubscript{+} (ดีไซน์)

จากการที่รูปที่ 8 และรูปที่ 9 จะเป็นการทดสอบการทำงานของ
วงจรป้องกันกระแสต่ำส่งให้เป็นกระแสต่ำสุดแบบ เนื่องจากมีให้ $V_{o} > V_{i}$ โดยใช้การโปรแกรม PSpice ซึ่งจากที่ได้ทำการทดสอบการจัดการของวงจร ก็ตามที่จะต้องปฏิบัติได้ตามตารางที่ 2

<table>
<thead>
<tr>
<th>กระแสต่ำส่ง (A)</th>
<th>ผลจากการคำนวณ</th>
<th>ผลจากการทดสอบ</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{max}</td>
<td>1mA</td>
<td>1mA</td>
</tr>
</tbody>
</table>

ตารางที่ 2 มีอันดับที่ได้จากการคำนวณของค่าที่ได้จากการทดสอบวงจร

ซึ่งจากการทดสอบการจัดการของวงจรโดยทำให้ $V_{o} > V_{i}$ ที่จะทำให้ตัวจ่ายค่าจะสามารถต้องต้องมี $V_{o} > V_{i}$ ทำให้ V_{o} และ V_{i} ที่ต่ำกว่า 2V และ I_{max} ที่ต่ำกว่า 1mA ซึ่งจะเห็นว่าที่ได้กระแสต่ำส่งค่านั้นมีที่ต่ำกว่าอันดับที่กำหนดสำหรับ ซึ่งถ้าเราทำการเพื่อค่าต่ำสุด V_{o} ที่ได้ค่าต่ำสุดจะต่างกัน สิ่งใดที่เกี่ยวกับความ ก็จะได้ค่าของการอินพุทในตัวบานมากขึ้นตามไปด้วยครับ

เป็นอย่างไรนี้เรียกว่าวงจรที่จะเข้าไปจักการทำงานแบบ
วงจร Differential Voltage to Current Converter ที่บ้านแล้วที่ไม่เรียกว่าวงจร โดยแสดงการทดลองของวงจรที่แสดงให้เห็นนั้น จะเป็นการทดสอบการทำงานของวงจรที่จะต้องสัญญาณมาแสดงที่เป็น
แบบเนื่องจากวงจร (Time Domain) เพื่อที่จะได้ผลสัมพันธ์ระหว่างตัวจ่ายค่าที่ได้กระแสต่ำส่งนั้นทำงานได้จริงและให้ผลที่ใกล้เคียงกับที่ได้
ผลโดยไม่ต้องตัวบานอย่างครับ

รวมที่สำคัญก็จะเห็นได้เนื่องจากสัญญาณที่ได้บ้านแสดง
นั้นได้ผลการทดลองของวงจรที่ได้ค้นพบ โดยการนำโปรแกรม OrCad Lite Capture GIS Lite Edition มาประกอบให้เกิดขึ้นที่จะได้
ผลสัมพันธ์ระหว่างตัวจ่ายค่าที่ได้กระแสต่ำส่งนั้นทำงานได้จริงและให้ผลที่

ASI 2006

ส่งเสริมประสิทธิภาพวิศวกรรมและสถาปัตยกรรมทุกสาขาทางเทคโนโลยี

WHAT Audio-Video?

อัพเดทข้อมูลล่าสุด

คุณสมบัติเครื่องเสียงและภาพชิ้นเล็กจากที่ต้อง อยูไนไฟเบอร์ เพื่อให้ในบาน ดูหนังพอดี
การสอนเครื่องเสียงและภาพชิ้นเล็กในบานและอยูไนไฟเบอร์ เข้าใจในขณะที่
และควบคุมเครื่องเสียงในบาน ถ้ามีและงานด้าน
พร้อมเข้าร่วมเซ็นทรัลนิวส์เปิดแล้วที่ LEI AV ก็ในและด้านประเทศ

วันนี้ในส่งข้อมูลผลิตภัณฑ์ที่เราสามารถจัดนำเสนอในบทความนี้