เรียนรู้และทำความเข้าใจ
เกี่ยวกับเรื่องหลอดสัญญาณ
รวมถึงการทดสอบคุณสมบัติ
ของหลอดเบอร์ต่างๆ (ตอน 4)

...เป็นอุปกรณ์ชนิดหนึ่ง
ที่ได้รับความนิยมในแต่ละคัด
จนถึงปัจจุบัน ในการนำ
มาประกอบเข้ากับวงจรต่างๆ
และเรื่องนี้
จะได้กล่าวถึงวิธีการออกแบบ
วงจรขยายสัญญาณที่ได้ ที่ใช้
หลอดสัญญาณแบบต่างๆ
ก่อนที่เราจะทำการออกแบบ
วงจรต่างๆ ต่อไป...
นายอย่างนั้นมึงต้องการอะไรกับวิศวกรรมการออกแบบบางจุดใช่สัญญาณที่ต้องการหรือไม่กันบ้าง...???

จำเป็นสำหรับการออกแบบบางจุดสัญญาณเสียงที่ต้องการใช้ก็ต้องการมั้ย เพื่อสร้างและรู้จักวิธีการออกใช้ของสัญญาณ ที่ต้องการใช้หลักๆ นั้นๆ ไม่ได้สัญญาณที่ต้องการที่มีคุณภาพหรือการทำงานที่ดี แต่โดยวิธีการการออกแบบบางจุดอาจจะไม่ได้สัญญาณที่มีคุณภาพดีคืนกลับมา ซึ่งขั้นตอนที่ต้องใช้

1. ลักษณะของผลต้นสัญญาณที่ทำาดังท่าน

2. ลักษณะของเครื่องขยายเสียงเมมเบลสัญญาณอากาศ

เฉพาะสิ่งที่ต้องการทำในการออกแบบบางจุดสัญญาณ นั่นก็คือการวางแผนรูปแบบและกำหนดโครงสร้างพื้นฐานที่จะต้องทำู โดยการตัดสินใจที่จะมีต้องใช้การจำแนกการ ที่ผู้ออกแบบต้องมีความรู้อย่างมากเกี่ยวกับโครงสร้างวิว ต่อสายสัญญาณ และต้อง

การออกแบบบางจุดที่ผ่านมาของผู้ออกแบบต่างๆ โดยนักเขียน ที่สามารถใช้ในการออกแบบบางจุดหรือจะทำได้โดยไม่ต้องการ。

สัญญาณที่ต้องการออกจะต้องมีการตัดสินใจสัญญาณ ที่ทำาดังท่าน

1. มีค่า Gain 12 หรือค่าน่ากว่า

2. มีค่าอย่างต่ำต่ำในแบบต่อต่อโดยมีค่าไม่ได้แสดง

3. มีค่าสัญญาณอินพุทที่ต่ำ 1.7 V เป็นแบบ peak-to-peak

4. มีค่าสัญญาณอินพุทสูงสุดมีค่าเท่ากับ 20 V ที่เป็นแบบ peak-to-peak

5) กระทำที่เกิดในวงจรในขณะที่พื้นฐานสัญญาณมีค่า

6) แรงดันไฟฟ้าที่กันสัญญาณต่อสัญญาณต่ำ 5 mA

7) แรงดันไฟฟ้าที่วิ่งเข้าไปได้สัญญาณต่ำ 220 V (+V = 220 V)

8) ตอบสนองความดีในการใช้งานที่ต่ำความถี่ 10 Hz
3. ลักษณะของวงจรยานเสิงและไฟล์สัญญาณที่จะออกแบบ

ที่นี่เราเริ่มการออกแบบของวงจรอิเล็กทรอนิกส์ในส่วนแรกของวงจรอิเล็กทรอนิกส์ในส่วนของวงจรอิเล็กทรอนิกส์ของ Gain กันกันมั่นคง ซึ่งจะเห็นว่า เราต้องการค่า Gain ที่เท่ากับ 12 หรือค่าสัญญาณกันกันมั่นคง 12 วัตต์ โดยการใช้จุลวาล์วสัญญาณส่ง จนกว่าจะมีสัญญาณที่มีค่าสัญญาณกันกันมั่นคงค่าสัญญาณเส้นตรงที่ เราต้องการคือ 20 Vpp ค่ากันกันมั่นคงค่าสัญญาณเส้นตรงที่เราต้องการคือ 1.7 Vpp มวลตัว

เพราะฉะนั้นเราใช้ค่าสัญญาณเส้นตรงที่มีค่าสัญญาณกันกันมั่นคงค่าสัญญาณเส้นตรงที่เราต้องการคือ 1.7 Vpp มวลตัว

\[
\text{Gain} = \frac{20 \text{ Vpp}}{1.7 \text{ Vpp}} = 11.76 \approx 12
\]

ซึ่งลักษณะของสัญญาณที่เราต้องการได้แสดงไว้ในรูปที่ 4 วงจร

ซึ่งในรูปที่ 4 นั้นจะเห็นได้ว่าสัญญาณเป็นสัญญาณเรติคิวที่มีลักษณะเป็นแบบ Sine-Waves นั่นเองครับ

เป็นลำดับโดยตรงผลที่จะเข้าใจถึงสัญญาณที่มีเรติคิวที่เกี่ยวกับการออกแบบวงจรอิเล็กทรอนิกส์ครับ

ที่นี่เราได้แสดงวงจรยานเสิงและตัวย่อยของวงจรในรูป...

4. สัญญาณยานเสิงที่ที่ถูกต้องและค่าสัญญาณเส้นตรงที่เราต้องการ

5. วงจรยานเสิงและสัญญาณที่ใช้ในสัญญาณยานเสิง

ในรูปแบบ

วงจรยานเสิงแสดงสัญญาณเส้นตรงที่จะออกแบบโดยใช้ adres ของการออกแบบวงจร ซึ่งในรูปที่ 5 นั้นจะเห็นได้ว่าปัจจุบันมีหลักสูตรในการออกแบบวงจร ซึ่งจากในรูปที่ 5 นั้นจะเห็นได้ว่าตัวย่อยของวงจรต่างๆ นั้นไม่ได้แสดงครับ

แต่ส่วนใหญ่จะมั่นคงเพราะว่าเป็นตัวอย่างของวงจรที่จะออกแบบวงจร เพื่อที่จะให้ผู้ใช้ตัดสินใจสามารถเข้าใจวิธีการออกแบบวงจรได้อย่างง่ายดายมากที่สุดออกแบบมั่นคง...

จากรูปที่ 4 เป็นภาพแสดงตัวอย่างของวงจรยานเสิงและสัญญาณของวงจรยานเสิง 6D8 ที่ใช้ในการออกแบบวงจรยานเสิงดังกล่าว

สัญญาณจุดต่างๆ ในวงจรได้กำหนดไว้ในอินพุตที่มีค่าสัญญาณต่างๆ มวลตัว แต่ในรูปที่ 5 เราจะมีการใช้ในวงจรยานเสิงของวงจรยานเสิง 6D8 ที่ใช้ในการออกแบบวงจรยานเสิง

ขั้นตอนการออกแบบวงจร

จากลักษณะที่แสดงว่าในรูปที่ 6 จะเห็นว่ามีสัญญาณ Loadline ที่เรามีเป็นค่ากันกันมั่นคง โดยสัญญาณ Loadline นี้เราจะทำการบายพาสตั้นที่ติดต่อกับวงจรที่ติดต่อกับตัวจุด (V = 10 mA) และไปยังวงจรยานเสิงต่อที่จุด (V = 220 V) ที่มีก็มีความหมายที่จะได้จากวงจรที่มีเป็นสัญญาณที่เรียกว่า Loadline เพื่อจะได้กันวงจร โดยเราจึงจะใช้ไฟฟ้าที่ 220 V (+V = 220 V)
จุดนี้ท่านทำคำค่าความต้านทานของ R_{pd} ดังแสดงในรูปที่ 5 โดยสามารถคำนวณแนวได้จาก

$$R = \frac{V}{I}$$

$$R_{pd} = \frac{V}{I} = \frac{220 \text{ V}}{10 \text{ mA}} = 22 \text{ k} \Omega$$

จากที่ได้ผลท่านจะทำให้ท่านค่าความต้านทานของ R_{pd} ดังแสดงในรูปที่ 6 โดยในส่วนของความต้านทานของ V_{p} นั้นจะทำให้ท่านจำแนกจาก $V_{p} = V_{s} + V_{o}$ โดยจะใช้ผลที่ได้จากที่ท่านค่าความต้านทาน V_{o} ที่มีต่ำเท่ากับ 5 mA ดังแสดงในรูปที่ 6

ซึ่งในส่วนของ V_{p} และ I_{p} ที่นี้ถ้าท่านก็จะเป็นตัวที่จะบอกข้อความของกระแสผู้ดูแลตัวอย่างจะมีค่าประมาณที่มาในเรื่อง

$\text{ในส่วนของระหว่าง} V_{p}$ นั้น ถ้าท่านค่าความต้านทาน V_{p} ที่มีค่าเป็นตัวที่จะบอกข้อความของกระแสผู้ดูแลตัวอย่าง

ซึ่งจากที่ได้ท่านทำคำค่าความต้านทานจะมีค่าที่จะทำให้ค่าของ V_{p} และ I_{p} นี้ยิงที่สำหรับที่จะบอกข้อความของกระแสผู้ดูแลตัวอย่าง

จากที่ได้ V_{p} ที่มีค่าเป็นตัวที่จะทำให้ค่าของ R_{pd} ที่มีต่ำเท่ากับ 5 mA ดังแสดงในรูปที่ 6

เมื่อคำค่านี้ได้ V_{p} (หรือ V_{s})

และในส่วนของคำค่าความต้านทาน R_{pd} นั้นถ้าท่านทำคำค่านี้ได้แต่ละอย่างที่จะทำให้ค่าอยู่ในระหว่าง $20 \text{ k} \Omega$ ถึง $100 \text{ k} \Omega$ โดยที่อยู่กับการเลือกใช้งานครับ และในที่นี้จะใช้คำค่านี้ $R_{pd} = 100 \text{ k} \Omega$

ต่อจากนี้เป็นการคำค่าความเรือด้านคู่ปิด C_{c} และ R_{D} ซึ่งว่าจะทำคำค่านี้ให้ง่ายดายที่สุดจะทำให้ค่าของ

จากการจำเป็นเป็นนั้นยาก โดยที่มีลักษณะเป็นวงจรของความถี่สูง

ซึ่งที่ทำไปแล้วจะคำนวณที่ความถี่ 10 Hz ในการใช้งานจริง

โดยที่มีความที่ยังยากที่จะคำนวณอย่างนี้ได้แต่ตัวอย่างที่จะใช้คำค่านี้เรื่อยๆในเรื่องนี้ได้ที่นี้ ตกลงกำหนดในรูปที่ 7

ก็มีถ้าคุณตอบรับว่าจะตอบแบบในส่วนนี้จะทำ

โดยในนี้ที่ทำให้ข้อมูลดังจะบอกข้อความการคำค่านี้ใช้งาน

$$f = \frac{1}{2 \pi RC}$$
จากสูตรเราจะเห็นว่าสามารถที่จะแทนค่าต่อด้านงาน
ของดูดน้ำหนักต่าง ๆ ได้โดยด้วย แต่เมื่อถึงการออกแบบ
เช่นนี้สุดท้ายจะเห็นว่าตัวของ \(f = 10\ Hz \) นั้นเป็นสิ่ง
ที่เราต้องการ แต่ถ้าสูงเท่าต่อค่าของ \(R \) กับ \(C \) แรกเริ่ม งานจะ
ใช้ต่อทางที่ทำให้สูงขึ้นมาอย่างมากจะทำให้การตอบ
ของดูดน้ำหนักต่าง ๆ (C) โดยเฉพาะที่สูงต้องถูกสัญญาณมีเครื่อง
ดังนั้นในที่นี้จะต้องตอบให้ค่าของ \(C \) เท่ากับ 0.22 \(\mu \)F
ดังนั้นจะไม่สามารถต่อนะจะต่อด้านงานของ \(R \) ได้ดังนี้

\[
\frac{1}{f} = \frac{1}{2 \pi R C} = \frac{1}{2 \pi \times 10 \ Hz \times 0.22 \ \mu F} = 72.3 \ \Omega
\]

เพื่อทำให้ได้ค่าของดูดน้ำหนักที่เราจะใช้งานแล้วคับ แต่
เพื่อให้ได้ค่าสูงสีสันที่เราได้ผ่านไม่สภาพในที่ต้องการ
หรือไม่ จึงต้องทำการทดสอบการทำงานของวงจร ดังแสดงใน
ตารางที่ 1 ตารางที่ 1 ที่จะได้ผลในแบบต่าง ๆ โดยที่วิธีในการออกแบบจะต้องได้จาก
การทดสอบวงจรที่ต้องออกแบบ.

<table>
<thead>
<tr>
<th>ค่าต่อด้านงานที่ต้องออกแบบ</th>
<th>ค่าต่อด้านงานที่ต้องออกแบบ</th>
</tr>
</thead>
<tbody>
<tr>
<td>ได้จากวิธีก่อน</td>
<td>ได้จากวิธีก่อน</td>
</tr>
</tbody>
</table>

โดยที่จะเห็นได้ว่าสำหรับต่อด้านงานได้จากค่าของวงจรที่ต้องการ
แล้วคับ ซึ่งวิธีการใช้งานได้โดยการหา
การตอบเป็นวงจรที่มีการคัดลอกต่าง ๆ ของดูดน้ำหนักที่เราต้องการได้นั้น
อาจจะไม่มีความเหมาะสมของวงจรดังนั้น ซึ่งจะต้องคิดค่าต่อด้าน
งานนี้ที่ได้ผลสอนขึ้นไปให้ด้วยกันที่เราต้องการได้มากที่สุดคับ

ดังนั้นผลการทดสอบที่ได้จึงจะตัดมาได้ค่าต่อด้านงานไปจากที่ได้
ออกแบบไว้โดยด้วย แต่ไม่มีการใช้สื่อในที่ต้องการ เพราะที่ได้
ทำการทดสอบวงจรขอเลยคับแล้วก็เป็นไปตามที่ต้องออกแบบ ที่
กล่าวมาจะเห็นได้ว่าการออกแบบนี้ได้ไปด้วยความเหมาะสมโดย
แต่ต้องการที่จะต้องการในการออกแบบเป็นต่อเนื่อง ดังต้องการ
ดังนั้นจะรู้จักได้ความรู้มากคับ โดยที่เราต้องการจะจัด
วิธีการไปใช้ในการออกแบบวงจรต่าง ๆ ได้อีกด้วยด้วยคับ

มาถึงตอนนี้ก็จะเห็นได้ว่าหากเราต้องการทำให้ต่อด้านงานใช้งาน
ดูดน้ำหนักต่าง ๆ ของดูดน้ำหนักกันมากขึ้นแล้วขึ้นคับ ในทางการใช้งาน
ดูดน้ำหนักต่าง ๆ ของดูดน้ำหนักกันมากขึ้น
เพื่อให้การที่เราต้องการทำงานและจะต้องตอบกลับของวงจรจะสามารถ
คงดวยกันที่ได้กับคุณค่าการเฉพาะที่ทำงานอยู่คับ

แต่ละด้านมีพ่างกันในในแบบนี้ แต่ต้องการการต่อต่อ
วงจรที่เกี่ยวกับต่อด้านงานแบบต่าง ๆ เพื่อทำให้ต่อด้านงาน
ทำงานจะต้องให้ด้วยความต่อต่อการต่อต่อวงจรที่ใช้ดูดน้ำหนัก
นั้นสามารถที่จะทำให้เป็นไปตามที่จัดให้ได้ในแบบนี้คับ ดังนั้น
ในแบบนี้จะไม่ได้ที่เกี่ยวกับต่อด้านงานแต่ละด้านพ่างกันในในแบบนี้คับ
จะใช้...??

9. ผลการทดลองการทำงานแบบ Time Domain (โหมดทางเวลา)

10. ผลการทดลองการทำงานแบบ Frequency Domain (โหมดทาง
ความถี่)